Health & Wellbeing

Producing veterinary drugs with the MIDAS touch

Published May 15, 2018

Researchers from Victoria University of Wellington’s Ferrier Research Institute, Callaghan Innovation, the University of Canterbury, and Massey University have developed cutting-edge gene engineering technology to help scientists more efficiently manipulate DNA in order to produce new products, including a new veterinary drug. 

Ferrier Research Institute researchers have used this novel technology to produce a new flea treatment for domestic pets by manipulating a compound called nodulisporic acid A. 

“When used in insecticides, nodulisporic acid A is very effective at controlling fleas and ticks in domestic pets, but it is currently difficult to produce,” says Kyle van de Bittner, a PhD student at Ferrier Research Institute. “It is naturally produced in small quantities by a type of fungus, but until now the complexity of the compound and the fungus have prevented scientists from producing the compound in greater quantities. This has greatly impeded any development of drugs that include nodulisporic acid A.”

Using the new gene engineering technology, Ferrier staff have been able to better understand the compound and take the first steps towards producing it in greater quantities. They have identified the genes involved in producing an early stage of nodulisporic acid A, and been able to transfer those genes into a different fungus. This fungus grows quickly and has biological qualities which help speed up the process of making nodulisporic acid A. 

There are additional advantages to the method.

“Rather than relying on toxic solvents typically used in the chemical synthesis of compounds like this, we use sugar water to grow the fungi to create the compounds,” Kyle says. “This is cheaper and more environmentally-friendly than current methods.”

Ferrier staff plan to continue development of the compound. They are also working with Matt Nicholson at VicLink, Victoria University’s commercialisation arm, to create a commercial product based on their work. The commercialisation work is funded by Kiwinet. 

“This is just the beginning,” Kyle says. “We still have a great deal of work to do to finalise the production of our key chemical target, nodulisporic acid A, and optimise the fungus to make more of it. But the science is delivering and we are inspired to push the limits of what is possible.” 

The new veterinary medicine was made possible by a novel technology called MIDAS (Modular Idempotent DNA Assembly System). MIDAS is a synthetic biology system that gives scientists more control over the DNA they manipulate during their research, resulting in a faster and more efficient way to make new pharmaceuticals, biofuels, antibodies, and more.

“Using MIDAS, scientists can more rapidly assemble new genes from a library of DNA parts,” says Callaghan Innovation scientist Dr Craig van Dolleweerd, who designed the MIDAS technology. “They can quickly test what the new genes do, and how they interact with other genes. This will greatly speed up research into the discovery of new biochemical pathways and the manufacture of new synthetic biology products, which includes everything from biofuels to fragrances.”

An article about the MIDAS technology was recently published in ACS Synthetic Biology, a leading journal in the new area of synthetic biology, and the nodulisporic acid A research appeared in the Journal of the American Chemical Society, the highest ranked chemistry journal in the world.

There are patents pending on both the MIDAS technology and the production of nodulisporic acid A, both of which have been developed with funding from the Ministry of Business, Innovation, and Employment and Fulbright NZ.

For more information please contact Professor Emily Parker on emily.parker@vuw.ac.nz or 04 463 9055, Kyle Van de Bittner on kyle.vandebittner@vuw.ac.nz or 04 463 8992, or Craig van Dolleweerd on Craig.vanDolleweerd@callaghaninnovation.govt.nz or 03 369 5210 

 

About the Ferrier Research Institute

The Ferrier Research Institute is a research only institute at Victoria University of Wellington interested in the treatment of unmet medical needs. Their scientists have deep experience in synthetic carbohydrate and medicinal chemistry, natural products and polysaccharide analysis, and a growing capability in the areas of chemical and synthetic biology. They partner with other scientists throughout New Zealand and the world to enable their drug discovery programmes and to progress their technologies to market. 

For more information about the Ferrier Research Institute, please visit https://www.victoria.ac.nz/ferrier 

About Callaghan Innovation

Callaghan Innovation is New Zealand’s innovation agency. It connects organisations to the networks, capability and co-funding they need to make their ideas happen with science and technology. Its 400 staff – including more than 200 of New Zealand’s leading scientists and engineers – are dedicated to solving technical problems, providing programmes that help hundreds of companies improve their ability to innovate, and facilitating R&D grants. It also has relationships with top research and innovation facilities locally and globally. 

For more information about Callaghan Innovation, please visit https://www.callaghaninnovation.govt.nz/ 

Photo credit: www.pawprintsphotography.co.nz